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Abstract. A new algorithm to solve nonconvex NLP problems is presented. It is based on
the solution of two problems. The reformulated problem RP is a suitable reformulation of
the original problem and involves convex terms and concave univariate terms. The main
problem MP is a nonconvex NLP that outer-approximates the feasible region and underes-
timate the objective function. MP involves convex terms and terms which are the products
of concave univariate functions and new variables. Fixing the variables in the concave terms,
a convex NLP that overestimates the feasible region and underestimates the objective func-
tion is obtained from the MP. Like most of the deterministic global optimization algorithms,
bounds on all the variables in the nonconvex terms must be provided. MP forces the objec-
tive value to improve and minimizes the difference of upper and lower bound of all the vari-
ables either to zero or to a positive value. In the first case, a feasible solution of the original
problem is reached and the objective function is improved. In general terms, the second case
corresponds to an infeasible solution of the original problem due to the existence of gaps in
some variables. A branching procedure is performed in order to either prove that there is no
better solution or reduce the domain, eliminating the local solution of MP that was found.
The MP solution indicates a key point to do the branching. A bound reduction technique
is implemented to accelerate the convergence speed. Computational results demonstrate that
the algorithm compares very favorably to other approaches when applied to test problems
and process design problems. It is typically faster and it produces very accurate results.
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1. Introduction

The problem of determining a global optimal solution of a nonconvex
NLP or MINLP problem is in general a very difficult task. A great effort
has been focused on studying theoretical and algorithmic aspects of global
optimization in the last decades. This is because there are practical prob-
lems where local optimization is not satisfactory.

The applicability of some deterministic methods of global optimization
is restricted to specific classes of problems. For bilinear programming
problems, Sherali and Alameddine (1992) developed an algorithm that
implements a reformulation-linearization technique embedded in a
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branch-and-bound procedure. Quesada and Grossmann (1995) proposed a
branch-and-bound algorithm for linear fractional and bilinear programs.

Floudas and Visweswaran (1993) proposed a primal–dual global opti-
mization algorithm. Later on they proposed a branch-and-bound frame-
work for the GOP algorithm (Visweswaran and Floudas, 1996). The branch
and reduce algorithm by Ryoo and Sahinidis (1996) implements reduc-
tion tests within a branch-and-bound framework. The αBB algorithm by
Androulakis et al. (1995) addresses general continuous optimization prob-
lems with twice-differentiable constraints and objective function. It involves
a parameter α for underestimating general nonconvex terms. The conver-
gence rate of this algorithm depends on the accurate estimation of each
parameter α.

Zamora and Grossmann (1999) presented a branch and contract algo-
rithm for problems with concave univariate, bilinear and linear fractional
terms.

The extended cutting plane algorithm by Westerlund and Petters-
son (1995) solves pseudoconvex MINLP problems to global optimality.
Adjiman et al. (2000) proposed two global optimization approaches for
solving nonconvex MINLP problems. The first approach is for separa-
ble continuous and integer domains, while the second approach addresses
general mixed integer nonlinear problems. For general problems, Smith
and Pantelides (1999) propose a reformulation/spatial branch-and-bound
algorithm.

A reference to the tunneling method developed by Levy and co-workers
should be made (see Levy and Gomez, 1985). This method consists of two
phases: the minimization phase and the tunneling phase. The former is
designed to decrease the value of the objective function, starting from a
good initial point. The tunneling phase attempts to obtain a good initial
point for the next minimization phase.

The purpose of this paper is to present a new deterministic algo-
rithm for solving nonconvex problems to attain global optimality, exploit-
ing ideas of tunneling approach and convex hull of nonconvex regions.
In the following section, the definition of the kind of problems we
are interested in is addressed. Techniques to reformulate the problem
are presented in Section 3, and a relaxed problem is constructed in
Section 4. Section 5 presents the main problem as well as theoreti-
cal results relating this problem with the original one. Some branching
strategies are discussed in Sections 6 and 7 exposes the proposed algorithm.
Range reduction strategies based on feasibility and some implementa-
tions details are discussed in Sections 8 and 9. Finally, the performance
of the algorithm is illustrated in Section 10 with the solution of 6
examples.
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2. Problem Definition and Grounds

The problem analyzed in this work presents the general form:

min f (x̄)

s.t. h̄ (x̄)= 0̄ P
ḡ (x̄)� 0̄
x̄LO � x̄ � x̄UP ,

where x̄ ∈�n is a vector of bounded continuous variables, ḡ :�n →�m is a
set of inequality constraints, h̄ :�n →�q is a set of equality constraints and
f :�n → � is the objective function to be minimized. The pursued goal is
to develop an algorithm of wide applicability in the area of chemical engi-
neering problems. The only requirement for the functions involved in P is
differentiability. However, problems that do not satisfy this requirement can
be properly modeled in order to suit for the algorithm. Then, the proposed
algorithm can be applied to any nonconvex problem in order to obtain the
global optimum, including problems having discontinuous functions and/or
integer variables. In Section 10, a problem including integer variables and
discontinuous functions is solved as an illustration of the capability of the
algorithm.

Tight convex relaxations have been proposed for several special alge-
braic forms. The convex envelope of bilinear functions was introduced by
McCormick (1976). Convex underestimators for linear fractional terms were
proposed in the works by Quesada and Grossmann (1995) and Zamora and
Grossmann (1999); and Tawarmalani and Sahinidis (2001) constructed the
convex envelope for this class of terms. The convex envelope of a concave
function over a simplex is an affine function that can be uniquely determined
by a system of linear equations. The convex envelope of products of univar-
iate functions has been studied in Maranas and Floudas (1995). For general
twice-differentiable terms, Androulakis et al. (1995) proposed the addition of
a quadratic term with a parameter α. The tightness of these underestimators
strongly depends on the precise estimation of α.

All these estimations share the property of an exact approximation on
the boundary of the box x̄LO � x̄ � x̄UP . Therefore, most of the global algo-
rithms are based on branch-and-bound techniques.

The methodology proposed here is focused on finding feasible points
with improved objective value. This is the idea underlying in the tunneling
algorithm (Levy and Gomez, 1985). The approach attempts to find a bet-
ter solution in each step or to eliminate regions where the objective value
cannot be improved.

It is easily shown that any algebraic expression is made up of binary oper-
ators (addition, subtraction, multiplication, division, and exponentiation)
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and unary operators corresponding to transcendental univariate function
(logarithms, exponentials, exponentiation and trigonometric functions).
Consequently, any problem having only arithmetic expressions can be
transformed into a completely equivalent problem where nonconvexities cor-
respond to bilinear terms, linear fractional terms, and concave univariate
functions. Since the reformulation procedure is exact, any convex relaxation
of the reformulated problem is also a valid relaxation for the original one.
Smith and Pantelides (1999) automate this symbolic reformulation procedure
and embed it in a spatial-branch and bound algorithm.

In this work we also reformulate the bilinear and linear fractional terms
using only concave and convex expressions. As it is pointed by Ryoo and
Sahinidis (1995), the separable reformulation of a nonlinear problem was
first proposed by (McCormick, 1972).

It is well known that any point in a convex polyhedron can be repre-
sented as a convex combination of the extreme points and extreme direc-
tions. In general, the convex combination of the extreme points of certain
region plus the nonnegative linear combination of extreme directions gives
rise to the convex hull of that region. If the extreme points and extreme
directions of a particular set are at hand, the convex hull is obtained with
a straightforward formulation.

The mathematical formulation for the convex hull of Q is

conv(Q)={x :x =λx1 + (1−λ)x2;0�λ�1, x1, x2 ∈Q}

Note that when λ=0 or 1, or when x1 =x2, then x ∈Q. Thus, if two points
in Q are known (generally two extreme points), an interior point in Q can
be calculated from the previous formulation, forcing |x2 − x1|→ 0. In Sec-
tion 4, these ideas are used to construct the main problem.

3. Reformulated Problem: RP

As it was mentioned before, the problem P is reformulated. The symbolic
reformulation is carried out adding new variables in order to simplify
the expressions in the constraints. The reformulation procedure leads to a
problem where nonconvexities are due to the presence of bilinear, linear
fractional and concave univariate terms. However, without much more
effort, it is possible to express each nonconvex term through concave uni-
variate functions.

For linear fractional terms, a new variable zij is added representing the
term xi/xj . The new variable zij replaces every occurrence of the fractional
term, and the bilinear constraint xjzij =xi is added to the model.

The manipulation of each bilinear term in order to express it using con-
cave and convex terms requires three new variables: z, α and β. Variable
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z replaces each occurrence of the product x1 x2. Variables α and β are
restricted by α = x1 + x2 and β = x1 − x2. Then, x1 x2 = (α2 −β2)/4. This
relation between the new variables is represented by the inequalities: −4z+
α2 −β2 � 0 and 4z+β2 −α2 � 0. There is a concave term in each inequal-
ity: −β2 and −α2, respectively. This separable reformulation of the bilinear
terms was also used by Ryoo and Sahinidis (1995).

Using the previous ideas any problem can be reformulated in the
required form (except for the problems involving trigonometric functions.
A problem of this type is analyzed in Section 10).

Therefore, the new problem is completely equivalent to the original
one and has three kinds of constraints: linear equality constraints, convex
inequality constraints and nonconvex inequality constraints. In addition,
each nonconvex inequality constraint has only one nonconvex term being
a concave univariate function.

In order to illustrate such reformulation, let us consider the follow-
ing reactor network design problem (this problem is solved in Section 10,
example 4):

min f (x)=−x4,

s.t. x1 −1+k1x1V1 =0,

x2 −x1 +k2x2V2 =0,

x3 +x1 −1+k3x3V1 =0,

x4 −x3 +x2 −x1 +k4x4V2 =0,

V 0.5
1 +V 0.5

2 �4,

0�xi �1 i =1, . . . ,4,

0�Vi �16 i =1,2,

k1 =0.09755988 k2 =0.99k1 k3 =0.0391908 k4 =0.9k3.

It has 4 bilinear terms and two concave terms. To reformulate it, new
variables are added, simplifying the terms and restrictions, to obtain an
equivalent problem in a higher dimensional space, having at the most one
nonconvex (concave univariate) term in each inequality constraint. The
resulting problem is:

min f (x)=−x4,

s.t. x1 −1+k1z1 =0,

x2 −x1 +k2z2 =0,

x3 +x1 −1+k3z3 =0,

x4 −x3 +x2 −x1 +k4z4 =0,

z5 + z6 �4
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αi =xi +V1 βi =xi −V1 i =1,3
αi =xi +V2 βi =xi −V2 i =2,4
α2

i −β2
i �4zi β2

i −α2
i �−4zi i =1, . . . ,4

V 0.5
1 � z5,

V 0.5
2 � z6,

0�αi �17 −16�βi �1 i =1, . . . ,4
0� zi �16 i =1, . . . ,4
0� zi �4 i =5,6
0�xi �1 i =1, . . . ,4
0�Vi �16 i =1,2

The bounds for the variables z’s, α’s, and β’s, are calculated from the x’s
and V ’s ones. In the previous problem, each constraint is either linear or
has only one concave univariate term.

In general, given any problem P (except for problems involving trigono-
metric functions), a reformulated problem RP can be generated, taking the
form:

min f c (x̄, z̄) ,

s.t. h̄l
(
x̄, z̄, ᾱ, β̄

)= 0̄,

ḡc
(
x̄, z̄, ᾱ, β̄

)
� 0̄, RP

tcu+ k̄c
(
x̄, z̄, ᾱ, β̄

)
� 0̄,

x̄LO � x̄ � x̄UP z̄LO � z̄� z̄UP ,

ᾱLO � ᾱ � ᾱUP β̄LO � β̄ � β̄UP ,

where h̄l are linear functions, f c, ḡc and k̄c are convex functions, and each
term tcu is a concave univariate function. Although RP is defined in a
space of higher dimension, P and RP are completely equivalent in the sense
that there exists a biunivoque correspondence between the feasible points
of both problems and the values of the objective function in the correspon-
dent points. Note that variables z are auxiliary variables included for refor-
mulating and convexifying P. In general, z̄= z̄(x̄). Thus, f c(x̄, z̄(x̄))=f (x̄).

4. The Convex Relaxation

According to Section 3, it is just necessary to consider the concave univar-
iate terms. Consider the following restriction (r):

tcu (w)+kc
(
x̄, z̄, ᾱ, β̄

)
�0, (r)

where kc is a convex function and tcu is a concave univariate function of
w. Note that w is one of variables in x̄, z̄, ᾱ or β̄.
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The set R of points defined by (r) is nonconvex. The convex hull of R
can be mathematically described through the convex combination of the
two extreme points

(
wLO, tcu

(
wLO

))
and

(
wUP , tcu

(
wUP

))
, where wLO and

wUP are the bounds for w, in the following way:

λ tcu
(
wLO

)+ (1−λ) tcu
(
wUP)

�−kc (
x̄, z̄, ᾱ, β̄

)

w =λwLO + (1−λ)wUP (r’)
0�λ�1

wLO �w �wUP

It is clear that the feasible set defined by (r’) is a convex set and contains
the feasible set defined by (r).

It should be noted that, although we have constructed the convex hull
in a high dimensional space, the projection onto the space of original vari-
ables x does not correspond to the convex hull of the original feasible
region but to a valid convex relaxation of it.

Figure 1 shows in solid line the concave boundary for the feasi-
ble set defined by constraint x1x2 � 3.5 in the domain D=[1,4] × [1,4].
The relaxation of the proposed separable reformulation of the constraint
was constructed in the (x1, x2, z, α, β)-space and its projection onto the
(x1, x2)-space is depicted in dark line.

1 2 3 4

1

2

3

4

x1 

x2

x1.x2=3.5 

Convex Hull

Proposed relaxation 

Figure 1. Relaxation of bilinear constraint.
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The boundary of the convex hull of the set {(x1, x2) :x1 x2 �3.5,1�x1 �4,
1 �x2 � 4} is also shown in dashed line in Figure 1. Note that the projec-
tion of the relaxation constructed in the higher dimensional space is less
tight than the convex hull in the (x1, x2)-space and there exists a relax-
ation gap in the extreme points. This is due to the methodology that
overestimates the feasible region on a different space. Although tighter
relaxations can be used, the proposed underestimation methodology entails
some advantages.

If the first two constraints in (r’) are changed replacing the bounds wLO

and wUP by new variables wL and wU , a valid underestimation for the con-
cave univariate function is also obtained. The new variables are bounded
by the same bounds as w. Also, wL is constrained to be lower than or
equal to wU . The new relaxation is:

λ tcu (wL)+ (1−λ) tcu (wU)�−kc
(
x̄, z̄, ᾱ, β̄

)
,

w =λwL + (1−λ)wU,

wL �wU, (rnc)

0�λ�1,

wLO �wL �wUP ,

wLO �wU �wUP .

The last three constraints are simply bounds for the variables and the
third constraint is a linear inequality. However, the first two inequalities in
(rnc) are nonconvex, regardless of the form of the concave function tcu.

As it can be seen in Figure 2, there exist several ways to represent
a value w as a convex combination of variables wL and wU , and each
of them leads to different values for the variable λ. From Figure 2,
tcu(w) � λj tcu(w

j

L) + (1 − λj )tcu(w
j

U) for both j=1 and j=2, where
λj = (w

j

U −w)/(w
j

U −w
j

L). This degree of freedom allows the proposed

ww

tcu(wU
1) tcu(wU
1) 

tcu(wU
2) tcu(wU
2) 

tcu(w) tcu(w) 

tcu(wL
2) tcu(wL
2) 

wU
2wU
2 wU

1wU
1wL

2wL
2

wUwU

tcu(wL
1) tcu(wL
1) 

wL
1wL
1

wLwL

Figure 2. Convex combination of tcu(w).
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algorithm to look for those values of wL and wU representing w that have
the smallest difference wU −wL.

5. Main Problem

The main problem to be solved in the proposed algorithm is formulated.
The solution of this problem indicates if a new better point has been found
or provides a key point to do a branching.

Given a general problem in the P form, it is transformed as it was
explained before, in order to put it in the equivalent RP form. Then, the
relaxation is constructed replacing the concave univariate terms like (r)
with the formulation (rnc). Let J be the cardinality of the set of concave
terms in RP. Then, there are J new variables wL, denoted by wLi , i =
1, . . . , J . In the same way, the J new variables wU are denoted by wUi ,
i =1, . . . , J . Finally, the J new variables λ are denoted by λi , i =1, . . . , J .

Let us assume that an upper bound f UP for the global minimal objective
value is known (it may be given from the best solution point found at the
moment). The main problem MP is formulated as follows,

min
J∑

i=1

(wU i −wLi),

s.t. f c(x̄, z̄)�f UP − ε,

h̄l(x̄, z̄, ᾱ, β̄)= 0̄, MP
ḡc(x̄, z̄, ᾱ, β̄)� 0̄,

λitcui (wLi)+ (1−λi) tcui (wUi)�−kc
i

(
x̄, z̄, ᾱ, β̄

)

wi =λiwLi + (1−λi)wUi,

wLi �wUi,

⎫
⎬

⎭
i =1, . . . , J

x̄LO � x̄ � x̄UP z̄LO � z̄� z̄UP

ᾱLO � ᾱ � ᾱUP β̄LO � β̄ � β̄UP

wLO
i �wLi �wUP

i wLO
i �wUi �wUP

i

0�λi �1 i =1, . . . , J

The objective function in MP minimizes the difference between the var-
iable bounds. The constraint f c(x̄, z̄) � f UP − ε acts as a reduction con-
straint. It forces the original objective function to improve when solving
MP. It also reduces the feasible region to be considered in each iteration,
eliminating regions, where f c is worse than the best known upper bound.
The presence of this restriction in MP makes avoidable the generation of
sequences of increasing lower bounds and decreasing upper bounds.



348 M.G. MARCOVECCHIO ET AL.

MP is clearly nonconvex. However, the nonconvex part consists of those
constraints where the variables λi appear.

It is important to note that the variables involved in the nonconvex
terms (wLi,wUi, λi, i = 1, . . ., J ) appear in three constraints at the most:
two nonconvex constraints representing convex combinations, and a con-
straint requiring that wLi shall be lower than or equal to wUi . Remem-
ber that wi is one of the variable in x̄, z̄, ᾱ or β̄ and not a new variable.
These are qualities that could be exploited. As it will be shown, if the MP
problem could be solved for global optimality easily, conclusions would be
strong.

Note that when variables wLi and wUi are fixed, the MP is a convex
problem. Let CP be the problem obtained from MP by fixing these vari-
ables at the bound values and changing the objective function by f c. Thus,
CP generates a convex overestimation of the original feasible region, and
its solution provides a lower bound to the global optimal objective.

min f c (x̄, z̄) ,

s.t. f c(x̄, z̄)�f UP − ε,

h̄l(x̄, z̄, ᾱ, β̄)= 0̄,

ḡc(x̄, z̄, ᾱ, β̄)� 0̄, CP
λitcui

(
wLO

i

)+ (1−λi) tcui

(
wUP

i

)
�−kc

i

(
x̄, z̄, ᾱ, β̄

)

wi =λiw
LO
i + (1−λi)wUP

i

}
i =1, . . . , J

x̄LO � x̄ � x̄UP z̄LO � z̄� z̄UP ,

ᾱLO � ᾱ � ᾱUP β̄LO � β̄ � β̄UP ,

0�λi �1 i =1, . . . , J.

The following properties analyze possible solutions for MP.

Properties:
(P1) If the feasible point in MP p̄∗ = (

x̄∗, z̄∗, ᾱ∗, β̄∗, w̄∗
L, w̄∗

U, λ̄∗) has an
objective value equal to 0, it is a global optimal of MP. Moreover, this
solution represents a feasible solution of P with an objective value better
than the upper bound f UP .
(P2) If the feasible point in MP p̄∗ = (

x̄∗, z̄∗, ᾱ∗, β̄∗, w̄∗
L, w̄∗

U, λ̄∗) has an
objective value greater than 0, but λ∗

i = 0 or 1, for those i so that 0 <

w∗
Ui −w∗

Li , it corresponds to a feasible point of P with an objective value
better than the upper bound f UP .
(P3) If the global optimum of MP p̄∗ = (

x̄∗, z̄∗, ᾱ∗, β̄∗, w̄∗
L, w̄∗

U, λ̄∗) has an
objective value greater than 0, there does not exist any solution of P with
an objective value smaller than (f UP − ε).
(P4) If MP is infeasible, there does not exist any solution of P with an
objective value smaller than (f UP − ε).
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THEOREM 1.
(a) CP is feasible if and only if MP is feasible.
(b) If CP is infeasible, there does not exist any solution of P with an objec-

tive value smaller than f UP − ε.

Proof. (a) Let p̄0 = (
x̄0, z̄0, ᾱ0, β̄0, λ̄0

)
be a feasible point in CP. Let w̄L0 =

w̄LO and w̄U0 = w̄UP . Clearly, the point
(
x̄0, z̄0, ᾱ0, β̄0, w̄L0, w̄U0, λ̄0

)
is feasi-

ble in MP.
Conversely, let

(
x̄0, z̄0, ᾱ0, β̄0, w̄L0, w̄U0, λ̄0

)
be a feasible point in MP. Let

us define λi = (wUP
i −w0i)/(w

UP
i −wLO

i ) for all i =1, . . . , J . Then, the con-
straint wi =λiw

LO
i + (1−λi)wUP

i is satisfied.
In order to check constraint λi tcui

(
wLO

i

) + (1−λi) tcui

(
wUP

i

)
�

−kc
i

(
x̄, z̄, ᾱ, β̄

)
in CP, the two possible cases for each i are analyzed.

For each i such that wL0i
= wU0i

(= w0i), −kc
i

(
x̄0, z̄0, ᾱ0, β̄0

)
� tcui (w0i ) �

λi tcui

(
wLO

i

) + (1−λi) tcui

(
wUP

i

)
, since tcu is a concave univariate func-

tion.
For each i such that wL0i < wU0i , λ0i = (wU0i − w0i)/(wU0i − wL0i).

Moreover, wL0i and wU0i can be represented by a convex combi-
nation of wLO

i and wUP
i , using λLi = (

wUP
i −wL0i

)/ (
wUP

i −wLO
i

)
and

λUi = (
wUP

i −wU0i

)/ (
wUP

i −wLO
i

)
, respectively. Since tcu is a concave

univariate function, tcui

(
wL0i

)
� λLitcui

(
wLO

i

) +
(

1−λLi

)
tcui

(
wUP

i

)
and

tcui

(
wU0i

)
�λUitcui

(
wLO

i

)+ (1−λUi) tcui

(
wUP

i

)
. Then, using these inequal-

ities in −kc
i

(
x̄0, z̄0, ᾱ0, β̄0

)
�λ0i tcui

(
wL0i

)+
(

1−λ0i

)
tcui

(
wU0i

)
and the val-

ues of λ0i , λLi , λUi and λi , the inequality −kc
i

(
x̄0, z̄0, ᾱ0, β̄0

)
� tcui

(
w0i

)
�

λitcui

(
wLO

i

)+
(

1−λi

)
tcui

(
wUP

i

)
is satisfied.

Then, the point
(
x̄0, z̄0, ᾱ0, β̄0, λ̄0

)
is feasible in CP.

(b) It is a consequence of part (a) and property (P4).
This theorem will be used in step 2 of the new algorithm to check infea-

sibility of MP.

6. Branching

Let p̄ = (
x̄, z̄, ᾱ, β̄, w̄L, w̄U , λ̄

)
be a feasible solution in MP, having∑J

i=1 (wUi −wLi) > 0. This positive value is called gap. Also, a variable wi

is involved in the gap if wLi <wUi .
Four possible cases may arise when MP is solved in Region D.

Case 1. A feasible point with an objective value equal to 0 is obtained. It
represents a new feasible point of the original problem with an objective
value lower than the upper bound f UP . Then, the upper bound to the
global optimal objective can be updated.
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Case 2. A feasible point with an objective value greater than 0 is obtained
and all the values of λi are equal to 0 or 1 for those i so that wi is involved
in the gap. In this case, although the variable bounds are not equal, the
solution represents a new feasible point of P.
Case 3. The problem is infeasible in the current region D and therefore
there is no solution of P in D with an objective value lower than f UP −ε.
The region can be discarded for further considerations.
Case 4. A feasible point with an objective value greater than 0 is obtained
and at least one variable λi is not 0 or 1 for some i so that wi is involved
in the gap. This point may be a local optimal of MP and therefore it is not
possible to obtain any conclusion about the original problem. The point
is feasible in MP but infeasible in RP. Then, the local optimum has to be
eliminated, and this is accomplished by subdividing D into smaller regions.
MP is solved again in each subdomain, in order to obtain a better solution
of P or discard the region.

The following theorem is applied to the previous fourth case.

THEOREM 2. Let us assume p̄∗ = (
x̄∗, z̄∗, ᾱ∗, β̄∗, w̄∗

L, w̄∗
U, λ̄∗) be an

optimal solution for MP, with
∑J

i=1

(
w∗

Ui −w∗
Li

)
> 0. And assume G0 =

{
i :w∗

Li <w∗
Ui ∧0<λ∗

i <1, i =1, . . . , J
}

. Then, the constraint λi tcui (wLi) +
(

1−λi

)
tcui

(
wUi

)
�−kc

i

(
x̄, z̄, ᾱ, β̄

)
is active in MP for i ∈G0.

Proof. Let i∈G0. The KKT conditions for p̄∗ that correspond to vari-
ables λi , wLi and wUi are

µ1
(
tcu(w∗

Li)− tcu(w∗
Ui)

)+γ
(
w∗

Li −w∗
Ui

)−µ1
λ +µ2

λ =0, (1)

−1+µ1
(
λ∗

i tcu
′(w∗

Li)
)+γ

(
λ∗

i

)+µ2 −µ1
wL

+µ2
wL

=0, (2)

1+µ1
(
(1−λ∗

i )tcu
′(w∗

Ui)
)+γ

(
1−λ∗

i

)−µ2 −µ1
wU

+µ2
wU

=0, (3)

µ1
(
λ∗

i tcui

(
w∗

Li

)+ (
1−λ∗

i

)
tcui

(
w∗

Ui

)+kc
i

(
x̄∗, z̄∗, ᾱ∗, β̄∗))=0,

µ2
(
w∗

Li −w∗
Ui

)=0,

µ1
λ

(
0−λ∗

i

)=0,

µ2
λ

(
λ∗

i −1
)=0,

µ1
wL

(
wLO

i −w∗
Li

)=0,

µ2
wL

(
w∗

Li −wUP
i

)=0,

µ1
wU

(
wLO

i −w∗
Ui

)=0,

µ2
wU

(
w∗

Ui −wUP
i

)=0,

µ1,µ2,µ
1
λ,µ

2
λ,µ

1
wL

,µ2
wL

,µ1
wU

,µ2
wU

�0.
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By hypothesis: 0 < λ∗
i < 1. Then, µ1

λ = µ2
λ = 0. Moreover, w∗

Li < w∗
Ui , so

µ2 = 0. Also µ2
wL

= µ1
wU

= 0, since, w∗
Li < w∗

Ui � wUP
i and wLO

i � w∗
Li < w∗

Ui .
Suppose the constraint is not active, then µ1 =0. From (1), since w∗

Li <w∗
Ui ,

it must be γ = 0. Thus, from (2) and (3): µ1
wL

= −1 and µ2
wU

= −1. This
is absurd due to the nonnegativity of multipliers. Therefore, the constraint
must be active.

Therefore, if MP is solved and Case 4 takes place, the set G0 defined in
Theorem 2 is not empty. Also, each i ∈G0 satisfies:

λ∗
i tcui

(
w∗

Li

)+ (
1−λ∗

i

)
tcui

(
w∗

Ui

)=−kc
i

(
x̄∗, z̄∗, ᾱ∗, β̄∗) ,

w∗
i =λ∗

i w
∗
Li +

(
1−λ∗

i

)
w∗

Ui,

0<λ∗
i <1 w∗

Li <w∗
i <w∗

Ui wLO
i �w∗

Li <wUP
i wLO

i <w∗
Ui �wUP

i .

Then, the local optimum of MP satisfies all constraints in RP, except for
tcui (wi)�−kc

i

(
x̄, z̄, ᾱ, β̄

)
for i ∈G0. Then, it is desirable to eliminate this

local optimal point from the feasible set of MP.
A suitable way to eliminate it is by partitioning the range for variable

wi0 , for some i0 ∈G0. The current Region D is divided into two subregions,
D1 and D2, both having the same bounds as Region D for every variable,
except for wi0 . The range for this variable in D1is [wLO

i0
,w∗

i0
], and the range

in D2 is [w∗
i0
,wUP

i0
]. Now, the previous local optimal point is infeasible in

both new regions.
There is another way to branch. Instead of dividing Region D in two

subregions, it can be divided in four subregions. All of them have the same
bounds as Region D for every variable, again except for wi0 . The ranges
for variable wi0 in the four generated subregions are [wLO

i0
,w∗

Li0
], [w∗

Li0
,w∗

i0
],

[w∗
i0
,w∗

Ui0
] and [w∗

Ui0
,wUP

i0
], considering of course only the intervals that has

nonempty interior. This alternative creates many more nodes, but it has
particular advantages. It is highly probable that the first and the last sub-
regions give rise to infeasible MP problems. This can be expected from the
solution obtained in Region R. (The solver could not find a local solution
in these ranges). In such a case, the region might be reduced faster than
carrying out partition in two subregions.

The branching is performed in one variable in the gap. A selection rule
has to be applied when there are more than one variable in the gap. The
variable is chosen obeying one of the rules:

Rule 1. choose the variable which has the greatest gap i0 = arg max
i∈G0{

w∗
Ui −w∗

Li

}
.
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Rule 2. select the variable with the greatest weighted gap: i0 = arg max
i∈G0{

(w∗
Ui −w∗

Li)/(w
UP
i −wLO

i )
}
.

Rule 3. select the variable with the greatest approximation error: i0 =
arg max

i∈G0

{
tcui

(
w∗

i

)− (
λ∗

i tcui

(
w∗

Li

)+ (
1−λ∗

i

)
tcui

(
w∗

Ui

))}
.

Rule 4. select the variable with the greatest minimal approximation i0 =
arg max

i∈G0

{
min{w∗

i −w∗
Li,w

∗
Ui −w∗

i }
}

Rule 5. weighted version of Rule 4.

Rule 6. choose the variable in a sort of priority order.

Alternatively, the branching can be performed on all the variables in
G0. In this case, all combinations between the subdomains of the vari-
ables should be considered. If bisection is used for each variable, then the
number of generated subregions is 2|G0|. If the branching is performed sub-
dividing the range of each variable in four intervals, then the number of
generated subregions is 4|G0| (supposing that no interval is empty). Clearly,
the number of subregions grows fast. Therefore, this option is just suitable
for small problems, that is, for problems having a few variables.

7. The Improve-and-Branch algorithm

Given a problem in the P form, the algorithm involves the following steps:

Step 1. Initialization:
Select a value for improvement parameter ε. Reformulate the problem in
order to put it in the RP form and formulate the main problem MP.
Let P = {Ro} be the set of regions to be explored, where Ro is the
hyperectangle defined by the bounds in RP. Solve the RP problem with
a local solver. If a feasible solution is found, denote this solution by(
x̄OPT , z̄OPT , ᾱOPT , β̄OPT

)
and f UP the objective value. If not, assign f UP

a value big enough. Set iter=1 and Riter=Ro.

Step 2. Solution of the MP Problem:
Solve the MP problem in Region Riter with a local solver.
If MP is infeasible in Region Riter, set P =P \ {Riter}. Go to Step 5.
Otherwise, let

(
x̄∗, z̄∗, ᾱ∗, β̄∗, w̄∗

L, w̄∗
U, λ̄∗) be the optimum.

Define G0 ={
i :w∗

Li <w∗
Ui ∧0<λ∗

i <1, i =1, . . . , J
}
.

If G0 =Ø, (the current solution is a feasible point of RP) go to Step 3, else
go to Step 4.
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Step 3. Solution of the RP Problem:
Solve the RP problem in Region Riter starting from the feasible point(
x̄∗, z̄∗, ᾱ∗, β̄∗) with a local solver adding constraint f c (x̄, z̄)�f UP −ε. Let(
x̄∗, z̄∗, ᾱ∗, β̄∗) be the local solution and f ∗ the objective value. Update:(
x̄OPT , z̄OPT , ᾱOPT , β̄OPT

)= (
x̄∗, z̄∗, ᾱ∗, β̄∗), f UP =f ∗. Go to Step 5.

Step 4. Branching:
Apply a branching rule to Riter in one or more variables involved in the
gap, generating new subregions

{
Riter1,Riter2, . . . ,Riterq

}
, place them on the

list P and set P =P \ {Riter}. Go to Step 5.

Step 5. Stop Criterion:
If P=Ø, stop: the current best solution is the global optimal. Otherwise, set
iter = iter + 1 and choose Riter from P. Return to Step 2 (See Figure 3).

8. Bound Reduction Strategies and Convergence

The proposed algorithm has the same structure than the branch-and-bound
ones, but it does not look for bounds for the objective function. However,
one region is discarded when it is infeasible, requiring that the objective
function value shall be less than the best one at the moment, like in a
branch-and-bound method. Thus, the finite convergence characteristics of
the branch-and-bound algorithms are valid for the proposed algorithm.

Nevertheless, the critical importance of the tightness of variable bounds
to reach reasonable convergence speed is widely known. The proposed
algorithm finishes when all subregions have been discarded due to infea-
sibility. Success of many branch-and-bound methods relies on good proce-
dures for tightening the bounds in the variables (Ryoo and Sahinidis, 1996;
Zamora and Grossmann, 1999). The practice of solving 2n problems has
been proposed to find the maximal and minimal values of each variable
subject to the relaxation of the original constraints. This procedure may be
too costly to be applied.

In the algorithm proposed in this paper, a feasibility-based range reduc-
tion is applied. The bound-tightening procedure used here is, in some sense,
similar to the monotonicity and bounding tests proposed by Hansen et al.
(1991) in their analytical approach to global optimization. It captures the
relationship between the variables based on the original constraints.

9. Implementation Issues

Since MP is solved with a local optimization solver, there exists the pos-
sibility of declaring a subregion infeasible when actually it is not. An effi-
cient strategy to overcome this difficulty is to solve the convex problem CP
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before discarding the current region. Note that solving CP provides a feasi-
ble point of MP or proves that MP is infeasible (Theorem 2.a). In the first
case, the MP is solved with the solution of CP as starting point.

It should be noted that the initial (feasible) point for RP is provided by
the solution of MP where the objective value is 0. Then, each time RP is
solved, it is feasible and provides a new upper bound.

The algorithm is also applicable to MINLP problems. The approach is
the same adopted by some researches (Ryoo and Sahinidis, 1995). Binary
variables are modeled as continuous variables and integrality is forced at
all feasible points by introducing integrality constraints. In particular, it
has been suggested the integrality constraint: x −x2 = 0, which forces x to
a value of either 0 or 1. A valid convex relaxation of this constraint is
obtained by replacing the quadratic term by a new variable z and formulat-
ing the convex envelope of this bilinear term: z�x, z�0, z�2x −1. As it
was pointed out by Smith and Pantelides (1999), this inequalities combined
with the original constraints x − z = 0 are equivalent to 0 � x � 1, which
add no more information to the convex relaxation. In our approach, how-
ever, the noconvexities involved in the integrality constraints of the binary
variables give rise to a new improvement direction. Integrality constraints
can be expressed as two inequalities: x2 − x � 0 and x − x2 � 0, the first
one being convex and the second concave. Then, they are included in MP
through the following formulation:

x2 −x �0,

x − [
λ(xL)2 + (1−λ)(xU)2]�0.

Then, xU −xL appears in the objective function.
It is worth noting that there exists a compromise between the magnitude

of the improvement parameter ε and the algorithm performance. A large
value might allow the algorithm to miss the global solution. On the other
hand, a very small value of ε may slow down the region discarding speed.

10. Computational Results

The algorithm was implemented in GAMS (Brooke et al., 1997) and a
large number of test problems were solved, six of which are presented here.
GAMS/CONOPT solver was used to solve the NLP problems in a 1.5 GHz
Pentium 4 PC.

It is difficult to compare the algorithm proposed here with other global
optimization algorithms. That is because of several facts: the algorithms are
tested in computers with different performances, each problem has several
ways to deal with, improvements for the algorithms are made continuously,
etc. Therefore, the examples in this section were taken from the literature
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Table 1. Computational results for example 1

ε With bound reduction techniques Without bound reduction techniques

Total iterations CPU time n◦ iter. global sol. Total iterations CPU time n◦ iter. global sol.

0.05 12 1.97 5 30 4.91 11
0.01 11 1.79 2 38 4.81 2
0.005 26 3.57 2 56 7.34 2
0.001 31 4.40 3 69 9.66 3

and the comparison with other algorithms was made taking as reference
the computational results reported by other authors.

EXAMPLE 1. As a first example we consider the maximization of the
Himmelblau’s function (Himmelblau, 1972). The function is:

fh(x̄)= (x2
1 +x2 −11)2 + (x1 +x2

2 −7)2, −4�x1 �4, −4�x2 �4.

This is a classical test function. Inside the domain, it has four global mini-
mums, 1 maximum, and four saddle points. However, the global maximum is a
boundary point. The global solution is in point x̄ = (0.3124484,−4).

The problem can be reformulated in the following way (minimization form):

min f =−c1 − c2,

s.t.− c1 +w2
1 �0,

−c2 +w2
2 �0,

−w1 +x2
1 +x2 −11�0,

−w2 +x2
2 +x1 −7�0,

−c1 −w2
1 �0,

−c2 −w2
2 �0,

−w1 −x2
1 −x2 +11�0,

−w2 −x2
2 −x1 +7�0.

There is a concave term in each last four constraints. The other constraints
are convex. So, there are four variables involved in nonconvex terms.

The problem was solved with the proposed algorithm, applying the first
rule of branching and employing bound reduction techniques.

The algorithm performance with different values of parameter ε was tested
in order to study the importance of the parameter with and without bound
reduction techniques. Table 1 shows the total number of iterations, the CPUs,
and the number of iterations in which the global solutions was found.

It is interesting to stand out that in all the cases with bound reduction
techniques, whenever there was a gap, it was in only one variable. Thus,
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any branching rule could be used. In the case without bound reduction
techniques, there were two cases similar to the previous ones, and two cases
in which a gap in two variables occurred.

EXAMPLE 2. The second example involves trigonometric functions. It
was taken from Maranas and Floudas (1994). The problem studies the
molecular conformation of pseudoethane, an ethane molecule in which all
the hydrogen atoms have been replaced by C, N or O atoms. The objective
is to minimize the potential energy of small molecules which is expressed
in terms of a single dihedral angle (t):

min f (t)= 588600
(

3r2
0 −4 cos(θ)r2

0 −2
(

sin2
(θ) cos

(
t − 2π

3

)− cos2(θ)
)

r2
0

)6

− 1079.1
(

3r2
0 −4 cos(θ)r2

0 −2
(

sin2
(θ) cos

(
t − 2π

3

)− cos2(θ)
)

r2
0

)3

+ 600800
(

3r2
0 −4 cos(θ)r2

0 −2
(

sin2
(θ) cos(t)− cos2(θ)

)
r2

0

)6

− 1071.5
(

3r2
0 −4 cos(θ)r2

0 −2
(

sin2
(θ) cos(t)− cos2(θ)

)
r2

0

)3

+ 481300
(

3r2
0 −4 cos(θ)r2

0 −2
(

sin2
(θ) cos

(
t + 2π

3

)− cos2(θ)
)

r2
0

)6

− 1064.6
(

3r2
0 −4 cos(θ)r2

0 −2
(

sin2
(θ) cos

(
t + 2π

3

)− cos2(θ)
)

r2
0

)3

0� t �2π,

where r0 is the covalent bond length (1.54Å) and θ is the covalent bond
angle (109.5◦).

Maranas and Floudas reported results on this problem applying their
α-BB algorithm: the convergence to the global optimum solution within
10−6 tolerance is achieved in 21 iterations and 1.1 CPU seconds on an
HP-9000/730.
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The function f has three local minimums in the domain. Two local opti-
mums appear at t = 1.0546, f =−0.7970 and t = 5.1683, f =−1.0396. The
global minimum is at t =3.2018 and f =−1.0709.

The problem was solved in two different ways.
For the first approach the problem is reformulated in the following way:

RP1: min f = z1 + z2 + z3 + z4 + z5 + z6,

s.t. z1 � 588600
(
A−B cos

(
t− 2π

3

))6 =g1(t) z2 �− 1079.1
(
A−B cos

(
t− 2π

3

))3 =g2(t)

z3 � 600800

(A−B cos(t))6 =g3(t) z4 �− 1071.5

(A−B cos(t))3 =g4(t)

z5 � 481300
(
A−B cos

(
t+ 2π

3

))6 =g5(t) z6�− 1064.6
(
A−B cos

(
t+ 2π

3

))3 =g6(t)

0� t �2π,

where A=3r2
0 −4 cos(θ)r2

0 +2 cos2(θ)r2
0 , and B =2 sin2

(θ)r2
0 . Since the algo-

rithm is based on underestimating concave univariate functions, the inter-
vals where functions gi(t) are concave or convex were determined. Each
gi(t) has two inflection points in the domain. So, the interval [0� t �2π ]
was divided in thirteen subintervals, as it is shown in Figure 4a. Thus, the
algorithm was applied in each interval. In each analyzed region, two or
three gi(t) are concave, and the remaining ones are convex. The algorithm
required a total of 45 iterations and 3.08 CPUs in order to guarantee glob-
ality within 10−6 tolerance.

The second approach reformulates the problem in the following way:

Figure 4. Subintervals defined by inflection points.
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RP2 : min f = z1 + z2 + z3 + z4 + z5 + z6

s.t. z1 � 588600
(w1)6

=h1(w1), z2 � 600800
(w2)6

=h2(w2),

z3 �−481300
(w3)3

=h3(w3), z4 �−1079.1
(w1)3

=h4(w1),

z5 �−1071.5
(w2)3

=h5(w2), z6 �−1064.6
(w3)3

=h6(w3),

(w1−A)/B �− cos(t − 2π
3 )=h7(t), (−w1+A)/B�cos(t − 2π

3 )=h8(t,)

(w2 −A)/B �− cos(t)=h9(t) (−w2+A)/B � cos(t)=h10(t)

(w3 −A)/B �− cos(t+2π
3 )=h11(t) (−w3+A)/B�cos(t + 2π

3 )=h12(t)

Functions h1, h2 and h3 are convex, and functions h4, h5 and h6 are con-
cave. However, each function hi , i=7, . . . ,12 has two inflection points in the
domain. The inflection points are the same for the pairs h7 − h8, h9 − h10

and h11 − h12. Thus, interval [0� t �2π ] was divided in seven subintervals,
as it is shown in Figure 4b, and the algorithm was applied in them. In each
analyzed region, six hi(t) are concave, and the remaining ones are convex.
The algorithm took seven iterations and 1.02 CPUs, within 10−6 tolerance.

EXAMPLE 3. This example attempts to find the global minimum of the
Hartman’s function (Dixon and Szegö, 1978). The function is given by

f (x)=−
m∑

i=1

ci exp

⎛

⎝
n∑

j=1

aij (xj −pij )
2

⎞

⎠

for 0� x̄ � 1.

The minimization of f can be reformulated as the following problem RP:

minf (x)=−
m∑

i=1

yi,

s.t. yi − ci exp(−zi)�0,

−yi + ci exp(−zi)�0 i =1, . . . ,m,

zi =
n∑

j=1

aijwj −2aijxjpij +aijp
2
ij ,

wj −x2
j �0 j =1, . . . , n,

−wj +x2
j �0,

xj �1 j =1, . . . , n,

zi, yi,wj , xj �0 i =1, . . . ,m j =1, . . . , n.
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Table 2. Data for instance 1 of example 3

i aij ci pij

1 3.0 10 30 1.0 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3.0 10 30 3 0.1091 0.8732 0.5547
4 0.1 10 35 3.2 0.03815 0.5743 0.8828

Table 3. Solution time for different values of improvement parameter ε

ε With bound reduction Without bound reduction

Iterations CPU time Iterations CPU time

0.05 36 4.91 132 18.64
0.01 51 9.52 339 53
0.005 36 5.92 375 55.87
0.001 38 8.15 478 86.98

There are m+n variables involved in nonconvex terms.
Two instances of this problem were solved with the proposed algorithm.

The first instance of the problem has m=4 and n=3. In Table 2 the data
for the problem are shown

The global solution is f =−3.86278, at x̄ = (0.11464,0.55565,0.85255).
Again, a study about the importance of improvement parameter ε was

made, assigning it several different values. Table 3 shows the number of
iterations and computational time required in each case.

The second instance of the Hartman’s problem that was implemented
considers m=4 and n=6. The data are shown in Table 4 and Table 5.

Table 4. Data for instance 2 of example 3- parameters a and c

i aij ci

1 10 3 17 3.5 1.7 8 1
2 0.05 10 17 0.1 8 14 1.2
3 3 3.5 1.7 10 17 8 3
4 17 8 0.05 10 0.1 14 3.2

Table 5. Data for instance 2 of example 3- parameters p

i pij

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381
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Figure 5. Reactor network design.

The global optimal solution is f = −3.32314 at x̄ = (0.20165,0.15021,
0.47737,0.27531,0.31163,0.65740), and it was found in the first iteration.
The algorithm requires 181 iterations to guarantee globality and takes
52.46 CPU sec. The value of improvement parameter ε was 0.01. With-
out bound reduction the problem could not be solved in less than 1000
iterations.

EXAMPLE 4. The next example is the simple reactor network design prob-
lem (see Figure 5), which was considered and reformulated in Section 3.

The global optimum is reached at the point x̄ = (0.7715,0.517,0.2042,
0.3888,3.0365,5.0961) with objective value f =−0.3888. The problem also
has two local minimums, at x̄ = (0.390,0.390,0.375,0.375,16,0) and at x̄ =
(1,0.393,0,0.388,0,16). This example constitutes a very difficult test prob-
lem as it exhibits a local minimum with an objective function value that is
very close to that of the global solution. Ryoo and Sahinidis (1995) solve
this problem with a branch-and-reduce algorithm. Their algorithm finds
the global solution in the first iteration and proves optimality after explor-
ing more than 400 nodes, with a tolerance of ε=10−6. Maranas and Flou-
das (1997) also solve this problem, using 299 iterations of the global opti-
mization algorithm.

Introducing the separable formulation for the four bilinear terms leads
to a problem with 10 nonconvex variables. Then, the main problem has 54
variables and 47 constraints. This problem is solved in 363 iterations with
the proposed algorithm, taking 46.13 CPU s, using a tolerance ε=10−4 and
Rule 2 for variable branching selection.

However, note that nonconvex variables α and β are defined:

α =xi +Vj ,

β =xi −Vj ,

where 0 � xi � 1 and 0 � Vj � 16. The bounds for α and β are then: 0 �
α � 17 and −16 � β � 1. A much tighter relaxation is obtained by scaling



362 M.G. MARCOVECCHIO ET AL.

Table 6. Computational results for example 4

Rule Total Iterations N◦ iter global solution CPU Time Epsilon

1 117 5 13.77 ε =10−4

2 151 5 15.72 ε =10−4

3 143 3 17.63 ε =10−4

4 147 3 17.68 ε =10−4

5 143 3 15.15 ε =10−4

variables V1 and V2 so that the range for these variables is 0 � Vj � 1.
The reaction constants are redefined so that they absorb the scale factor:
k1 = 16∗0.09755988, k2 = 0.99 k1, k3 = 16∗0.0391908, k4 = 0.9 k3 and the last
restriction is scaled: V 0.5

1 +V 0.5
2 � 1. In this way, the new ranges for α and

β are: 0�α �2 and −1�β �1.
With this modification, the proposed algorithm finishes the search in 151

iterations taking 15.75 CPU s, with an improvement parameter value of
ε =10−4 and Rule 2 for the branching variable selection. If a tolerance of
ε = 10−5 is used, the elimination of regions takes 209 iterations and if the
tolerance is of ε=10−6, the number of required iterations is 225 (both with
Rule 1).

Different branching variable selection rules were tested in this problem.
Table 6 shows the number of total iterations for the application of each
rule, improvement parameter and the iteration the global solution was
found at.

Bound reduction plays a decisive role in this problem, since convergence
could not be reached in less than 2000 iterations when bound reduction is
not performed.

EXAMPLE 5. This example illustrates the applicability of the proposed
algorithm to solve MINLP problems to global optimality.

The problem represents a heat exchanger network design, with a hot
stream to be cooled and a cold stream to be heated. The network con-
sists of one exchanger, one cooler and one heater. The cooler uses cool-
ing water to reach the target temperature of the hot streams, and the
heater uses high-pressure steam as heating utility. Data are given in
Table 7.

The variables to be determined are heat loads, areas of the exchangers and
temperatures T1 and T2. The objective function takes into account both utility
and investment cost. The investment cost is defined over a set of subintervals
for the areas of the exchangers, resulting in a discontinuous function. Türkay
and Grossmann (1996) formulate the discontinuous cost with a disjunction.
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Table 7. Data for example 5

Cost Coefficient

Area of Exchanger (m2) Fixed charge ($ /yr) Variable cost ($ /m2 yr)
0<A<10 β1 =3000 α1 =2750
10<A<25 β2 =15000 α2 =1500
25<A<50 β3 =46500 α3 =600

n=0.6

Overall heat transfer coefficient Uj (kW/m2 K)
U1 = 1.5 U2 = 0.5 U3 = 1.0

Data of streams

Stream FCp (kW/K) Inlet temperature (K) Outlet temperature (K)
Hot 10.0 500 340
Cold 7.5 350 560
Cooling water 300 320
Steam 600 600

The convex hull reformulation introduces 9 binary variables. The model, con-
taining 21 continuous variables, 9 semicontinuous variables (partial areas),
9 binary variables and 43 constraints, is given as follows:

min c=20Q2 +80Q3 +
3∑

i=1

3∑

j=1

cji

s.t. cji =αi(Aji)
n +βiyji j =1,2,3, i =1,2,3

Atot
j =

3∑

i=1

Aji j =1,2,3

3∑

i=1

yji =1 j =1,2,3

Alo iyji �Aji �Aup iyji j =1,2,3, i =1,2,3

Q1 =Fcphot (T hot
in −T1

)

Q1 =Fcpcold (
T2 −T cold

in

)

Q1 =Atot
1 U1LMT D1

LMTD1 =
(
(T1 −T cold

in )− (T hot
in −T2)

)

ln
(
(T1 −T cold

in )/(T hot
in −T2)

)

Q2 =Fcphot (T1 −T hot
out

)

Q2 =Atot
2 U2LMT D2
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LMTD2 =
(
(T hot

out −T cw
in )− (T1 −T cw

out)
)

ln
(
(T hot

out −T cw
in )/(T1 −T cw

out)
)

Q3 =Fcpcold(T cold
out −T2)

Q3 =Atot
3 U3 LMTD3

LMTD3 =
(
(T S −T2)− (T S −T cold

out )
)

ln
(
(T S −T2)/(T S −T cold

out )
)

350�T1, T2 �500

c, cij ,Qj , Atot
j ,Aji �0

LMTDj ∈� j =1,2,3; i =1,2,3

Aj1 �10, Aj2 �25, Aj3 �50,

yij =1,0.

After reformulation, the problem has 19 variables appearing in convex
terms, 21 variables in nonconvex terms (concave and bilinear), and 55 con-
straints; 29 of them are linear, 21 concave equalities and 5 bilinear equali-
ties. When the bilinear terms are replaced by its separable formulation, the
number of nonconvex variables increases to 31. The main problem involves
171 variables and 172 constraints.

The optimal values are shown in Table 9. The global solution corre-
sponds to a cost of 117711$ /yr. The global solution was found in itera-
tion 19. A total of 201 iterations were needed to check global optimality
when Rule 1 for selection of branching variable and tolerance ε = 100 are
used. The comparison of the number of total iterations and computational
time required for different values of tolerance and branching selection rules
are shown in Table 8. Bound reduction was critical for convergence in this
example. It takes advantage of the semicontinuous and discrete nature of
some variables (partial areas and binary variables y).

Table 8. Results for example 5

Rule Total Iterations N◦ iter global solution CPU Time Epsilon

1 201 19 72.69 ε =100
1 204 21 91.29 ε =10
2 270 17 105.47 ε =100
2 552 27 225.28 ε =10
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Table 9. Optimal solution of example 5

Area of exchanger Exchanger 1: 25 m2

Exchanger 2: 20.33 m2

Exchanger 3: 7.83 m2

Temperature T1 = 397.76 K
T2 = 486.31 K

Heat loads Q1 = 1022.36
Q2 = 577.64
Q3 = 552.64

Although, this example was solved successfully; there exist some diffi-
culties to solve general MINLP using the proposed algorithm. The binary
nature of the variables is tackled using the integrality constraint x −x2 =0.
Then, each binary variable adds one concave univariate term.

If the same approach is applied in order to deal with a general integer
variable whose range is large enough, the problem size is enlarged consider-
ably. Thus, the algorithm could require a high computational effort to solve
the problem.

Therefore, the proposed strategy is efficient to solve MINLPs having few
integer variables whose ranges are short enough. If the MINLP does not
fit these characteristics, the common techniques used in general branch and
bound algorithms can be applied, that is, considering integer variables as
continuous and branching on fractional values.

EXAMPLE 6. This is a model of a heat exchanger network synthesis
problem, taken from Floudas and Ciric (1989); Floudas et al. (1989). This
is a stream superstructure of one cold stream and two hot streams for
two heat exchangers. All possible flow configurations (splitting, mixing and
bypassing) are considered. Variables fi and ti are thermal capacity flow
rate and temperature of stream, respectively. H1 and H2 are heat streams
whose heat loads are 800 kW and 1000 kW, inlet temperatures are 320 K
and 340 K respectively, and outlet temperature is 300 K. C1 is cold stream
with inlet temperature of 100 K and outlet temperature of 280 K. The
problem is:

min f =1200
[

800/2.5
(

2/3
√

(320− t2)(300− t1)+ (320− t2)+ (300− t1)

6

)]0.6

+1200
[

1000/0.2
(

2/3
√

(340− t4)(300− t3)+ (340− t4)+ (300− t3)

6

)]0.6

,
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s.t. f1 +f2 =10, f1 +f6 =f3, f2 +f5 =f4

f5 +f7 =f3, f6 +f8 =f4

100f1 + t4f6 = t1f3, 100f2 + t2f5 = t3f4

f3(t2 − t1)=800, f4(t4 − t3)=1000,

100� t1 �290, 100� t2 �310,

100� t3 �290, 100� t4 �330,

0�fi �10, i =1,2, . . . ,8.

This problem has several local minimums, the global optimal solu-
tion is at f̄ = (0,10,10,10,0,10,10,0), t̄ = (200,280,100,200), with f =
12292.467132.

Floudas and Ciric (1989) showed that the objective function is convex.
Thus, the unique nonconvex terms are bilinear. The reformulated problem
involves 12 variables in concave univariate terms (αi and βi) and 18 vari-
ables in convex terms. The proposed algorithm was applied using bound
reduction techniques, within 10−6 tolerance. The global solution was deter-
mined in 1 iteration and 0.93 CPUs.

This example was used by Floudas et al. (1989) to test the decom-
position global optimization approaches, and it took several iterations.
Whereas, Ryoo and Sahinidis (1995) solved the problem using their
branch-and-reduce algorithm. It took 1 iteration and 2.2 CPUs.

11. Conclusions

In this paper, a new global optimization method has been introduced to
address nonlinear optimization problems, including nonconvexities both in
the objective function and constraints. The proposed algorithm is determin-
istic and attains finite ε-convergence to the global optimal solution.

The algorithm is based on two problems, which are generated from the
original problem. The first one is the reformulated problem, RP, and it
is completely equivalent to the original problem. However, constraints of
RP consist of linear equality constraints, convex inequality constraints and
nonconvex inequality constraints. Also, each nonconvex inequality con-
straint has only one nonconvex term being a concave univariate function.
The second one is the main problem, MP, and it is a nonconvex under-
estimation of the original problem. MP is formulated from RP, replacing
each concave univariate term by its convex envelope, where the bound of
the variables are variables. Thus, the objective function in MP minimizes
the difference between variable bounds. In each iteration, MP forces the
objective value to improve and minimizes the difference in upper and lower
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bounds. Then, there are two possibilities: a new better point is found, or
a branch is performed over the current region. Moreover, the MP solu-
tion provides a key point to do the branching, a point that eliminates the
local optimum of the current MP. The algorithm finishes when all the gen-
erated subregions have been analyzed and discarded. A bound reduction
technique is performed in order to accelerate the convergence speed.

The algorithm is applicable to a large guide of optimization problems,
as it was shown in the computational results. The examples include from
general NLP to MINLP problems. All of them were solved efficiently.

The numerical performance of the proposed algorithm was tested with
test problems and process design problems. Although reformulation intro-
duces new variables and concave terms, the obtained results show that the
algorithm compares very favorably to the ones reported in the literature.
Moreover, several examples were solved in less time and iterations than the
ones reported at the moment. Computational results and execution times
indicate the algorithm is highly efficient.
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